Visualization of cargo concentration by COPII minimal machinery in a planar lipid membrane.

نویسندگان

  • Kazuhito V Tabata
  • Ken Sato
  • Toru Ide
  • Takayuki Nishizaka
  • Akihiko Nakano
  • Hiroyuki Noji
چکیده

Selective protein export from the endoplasmic reticulum is mediated by COPII vesicles. Here, we investigated the dynamics of fluorescently labelled cargo and non-cargo proteins during COPII vesicle formation using single-molecule microscopy combined with an artificial planar lipid bilayer. Single-molecule analysis showed that the Sar1p-Sec23/24p-cargo complex, but not the Sar1p-Sec23/24p complex, undergoes partial dimerization before Sec13/31p recruitment. On addition of a complete COPII mixture, cargo molecules start to assemble into fluorescent spots and clusters followed by vesicle release from the planar membrane. We show that continuous GTPase cycles of Sar1p facilitate cargo concentration into COPII vesicle buds, and at the same time, non-cargo proteins are excluded from cargo clusters. We propose that the minimal set of COPII components is required not only to concentrate cargo molecules, but also to mediate exclusion of non-cargo proteins from the COPII vesicles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COPII Coat Composition Is Actively Regulated by Luminal Cargo Maturation

BACKGROUND Export from the ER is an essential process driven by the COPII coat, which forms vesicles at ER exit sites (ERESs) to transport mature secretory proteins to the Golgi. Although the basic mechanism of COPII assembly is known, how COPII machinery is regulated to meet varying cellular secretory demands is unclear. RESULTS Here, we report a specialized COPII system that is actively rec...

متن کامل

Cargo Selection by the COPII Budding Machinery during Export from the ER

Cargo is selectively exported from the ER in COPII vesicles. To analyze the role of COPII in selective transport from the ER, we have purified components of the mammalian COPII complex from rat liver cytosol and then analyzed their role in cargo selection and ER export. The purified mammalian Sec23-24 complex is composed of an 85-kD (Sec23) protein and a 120-kD (Sec24) protein. Although the Sec...

متن کامل

New Putative Chloroplast Vesicle Transport Components and Cargo Proteins Revealed Using a Bioinformatics Approach: An Arabidopsis Model

Proteins and lipids are known to be transported to targeted cytosolic compartments in vesicles. A similar system in chloroplasts is suggested to transfer lipids from the inner envelope to the thylakoids. However, little is known about both possible cargo proteins and the proteins required to build a functional vesicle transport system in chloroplasts. A few components have been suggested, but o...

متن کامل

Structural basis of cargo membrane protein discrimination by the human COPII coat machinery.

Genomic analysis shows that the increased complexity of trafficking pathways in mammalian cells involves an expansion of the number of SNARE, Rab and COP proteins. Thus, the human genome encodes four forms of Sec24, the cargo selection subunit of the COPII vesicular coat, and this is proposed to increase the range of cargo accommodated by human COPII-coated vesicles. In this study, we combined ...

متن کامل

Sar1p N-Terminal Helix Initiates Membrane Curvature and Completes the Fission of a COPII Vesicle

Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 28 21  شماره 

صفحات  -

تاریخ انتشار 2009